095

DYNAMIC BEHAVIOUR OF CHLOROFLUOROETHANES AT HALOGENATED SURFACES

M. McGeough, J. Thomson, G. Webb, J. M. Winfield Department of Chemistry, University of Glasgow, Glasgow G12 8QQ (U.K.)

D. G. McBeth, A. McCulloch and N. Winterton

Research and Technology Department, ICI C and P Ltd., Runcorn WA7 4QD (U.K.)

Apparent dismutation and isomerization reactions of chlorofluoroethanes, occurring at 350 - 425°C over a fluorinated chromia surface, can be accounted for by a halogen exchange model consisting of inter-related F-for-Cl and Cl-for-F reactions [1]. Reactions at other halogenated surfaces are now Isomerization of CCl₂FCClF₂ at aluminium(III) chloride has been reported. demonstrated previously [2]; it is the major process at room temperature although retention of $CCl_{2}FCClF_{2}$ at the surface is also significant (25%). A more active surface is produced by pretreatment of AlCl₃ with CH_3CCl_3 . This leads to formation of a purple polymer derived from the dehydrochlorination product $CH_2 = CCl_2$ [3]. At this surface, retention of CCl_2FCClF_2 is less marked (7%) and the major component (93%) of the volatile mixture is $CCl_{3}CF_{3}$. No detectable [³⁶Cl]-surface activity results when [³⁶Cl]-CCl_FCClF_ is used, suggesting that isomerization may be intramolecular as has been proposed for CCl2FCClF2 at AlCl3 [2]. Treatment of AlCl3 with CCl_FCClF_ followed by CH_CCl_ results not only in dehydrochlorination of the latter, but also in the liberation of CCl_3CF_3 from the surface. In contrast the almost complete (81%) retention of $CC1_{2}FCC1F_{2}$ by chlorinated γ -alumina blocks any catalytic activity towards dehydrochlorination of CH₃CCl₃.

- 1 L. Rowley, G. Webb, J.M. Winfield and A. McCulloch, <u>Appl.Catal</u>., in press.
- 2 W.T. Miller, E.W. Fager and P.H. Griswald, <u>J. Am. Chem. Soc.</u>, 72, 705 (1950).
- 3 D.G. McBeth, J.M. Winfield, B.W. Cook and N. Winterton, submitted to J. Chem. Soc. Dalton Trans.